Exponential sums on A n , III Alan Adolphson and Steven Sperber

نویسندگان

  • Steven Sperber
  • ALAN ADOLPHSON
  • STEVEN SPERBER
چکیده

We give two applications of our earlier work[4]. We compute the p-adic cohomology of certain exponential sums on An involving a polynomial whose homogeneous component of highest degree defines a projective hypersurface with at worst weighted homogeneous isolated singularities. This study was motivated by recent work of Garćıa[9]. We also compute the p-adic cohomology of certain exponential sums on An whose degree is divisible by the characteristic.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exponential Sums on A, Ii

We prove a vanishing theorem for the p-adic cohomology of exponential sums on An. In particular, we obtain new classes of exponential sums on An that have a single nonvanishing p-adic cohomology group. The dimension of this cohomology group equals a sum of Milnor numbers.

متن کامل

Exponential Sums on A

Let d = degree of f and write f = f (d) + f (d−1) + · · ·+ f , where f (j) is homogeneous of degree j. A by now classical theorem of Deligne[2, Théorème 8.4] says that if (p, d) = 1 and f (d) = 0 defines a smooth hypersurface in P, then L(A, f ; t) n+1 is a polynomial of degree (d − 1), all of whose reciprocal roots have absolute value equal to q. This implies the estimate |S(A(Fqi), f)| ≤ (d− ...

متن کامل

Divisibility of Exponential Sums via Elementary Methods

We present a totally elementary method for evaluating the order of p-divisibility of exponential sums over a prime field. This method unifies and sometimes improves many previously known results, such as those of Ax-Katz, Moreno-Moreno, Adolphson-Sperber, and CaoSun.

متن کامل

Exponential Sums On

where f (j) is homogeneous of degree j. Theorem 1.4. Suppose (p, δ) = 1 and f (δ) = 0 defines a smooth hypersurface in P. Then L(A, f ; t) n+1 is a polynomial of degree (δ − 1), all of whose reciprocal roots have absolute value q. For exponential sums on A, several generalizations of Deligne’s result have been proved ([1, 2, 5, 7]). In all these theorems, the hypothesis implies that f , regarde...

متن کامل

VARIATION OF p -ADIC NEWTON POLYGONS FOR L-FUNCTIONS OF EXPONENTIAL SUMS

Abstract. In this paper, we continue to develop the systematic decomposition theory [18] for the generic Newton polygon attached to a family of zeta functions over finite fields and more generally a family of L-functions of n-dimensional exponential sums over finite fields. Our aim is to establish a new collapsing decomposition theorem (Theorem 3.7) for the generic Newton polygon. A number of a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999